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ture by use of a neutron powder diffraction data set is 
in progress. 

The structure of Li2WO4(iii ) (Wilhelmi, Waltersson 
& L6fgren, 1977) was derived from single-crystal X- 
ray diffraction data. The Li positions (16 in the unit 
cell) were not determined. There are three minima in the 
maps giving altogether 16 locations in the unit cell (see 
Table 1). 

The three minima result in short L i - L i  separations 
(e.g. B - B  2-15 A). Therefore, the influence on the 
minimum positions of the symmetry function described 
above was examined. The new positions thus obtained 
all result in acceptable L i - O  coordinations and L i - L i  
distances (e.g. B - B  2-57 A) (see also Table 1). There- 
fore, the 16 atoms in the unit cell are assumed to be 
situated in: 

x y z 
A 4(e) 0 0 0.17 
B 4 ( f )  0 ½ 0.39 
C 8(h) 0.00 0-24 0-29. 

This method gives information about all the potential 
LiO 4 and LiO 6 polyhedra in a given oxygen matrix. The 
most probable Li sites may be indicated by the L i - O  
and L i - L i  separations among alternative suggestions. 
No other types of Li coordinations than LiO 4 and LiO 6 
polyhedra have been tested. 

The conclusion is that this method may be useful as 
a tool for determining Li positions in the presence of 
heavy atoms in crystal structures derived from X-ray 
diffraction data sets. The accuracy in the Li coordin- 
ates is comparable to that obtained by locating atomic 
positions from Fourier maps. 

I am grateful to Professor Arne Magn6li and Dr 
Karl-Axel Wilhelmi for stimulating interest and dis- 

cussions and to Dr Sven Westman for revising the 
English text. 
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For rigid molecules which undergo large librations, the dynamic density and the dynamic molecular 
scattering factor are derived. The general case is treated where translations and librations of the molecule are 
coupled (no site symmetry). The dynamic molecular scattering factor is an integral which cannot generally be 
solved, and temperature factors generally do not appear. For the special case of statistically independent 
translations and librations, a temperature factor for the translations of the molecule is obtained. Moreover, 
temperature factors are obtained for density units which are spherically symmetric, since the motions of these 
density units can be described by translations only. The possible cases for which spherically symmetric 
density units can be assumed and, hence, temperature factors can be applied, are discussed. 
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Introduct ion 

With the study of electron density distributions in 
molecular crystals by means of diffraction methods, an 
accurate description of the thermal vibrations of the 
molecules is important. Difficulties are primarily 
presented by large librations, since, with them, the 
nuclei cannot be considered to move along a straight 
line, and thus the harmonic approximation of the 
nuclear motions cannot be applied. The effects of large 
librations on the density distribution in molecules and 
possible ways of calculating structure factors are 
discussed (along with other problems) by Ruysink & 
Vos (1974), Bats & Feil (1977) and Stevens, Rys & 
Coppens (1977) (hereafter referred to as SRC). The 
structure factors were calculated from the dynamic 
density of the molecule (by Fourier transformation); 
the dynamic density is obtained by convolution of the 
static density and the thermal smearing function for 
rigid-body motions. In the cited papers, the convolution 
integral for large librations was not correctly estab- 
lished. Furthermore, it was assumed that translations 
and librations of the molecule are statistically indepen- 
dent; but this does not hold for molecules without site 
symmetry 1. In this paper we first establish the 
convolution integral for the general case of coupled 
translations and librations, and then derive the dynamic 
scattering factor for the molecule and, hence, the 
structure factor. It will be seen that temperature factors 
generally do not appear. We shall show that tem- 
perature factors are obtained if the density distribution 
in the molecule is (at least partially) expressed by 
density units of spherical symmetry. The possible 
applications of temperature factors for large librations 
of molecules will be discussed at the end of the paper. 

D y n a m i c  densi ty  and d y n a m i c  molecular  scattering 
factor 

The dynamic density is the average of all instan- 
taneous densities which arise with the thermal motions 
of the molecules in the crystal. This average is normally 
described by the convolution integral 

q-oo 

p(X)dy n = f ?(X -- n)sta t P(H) du, (I) 
--o0 

where u is the thermal-displacement vector at the 
position x, and P(u) the probability density function 
(p.d.f.) of u. The Fourier transform of P(u) is the 
temperature factor for the static density p(X)sta t. (1) 
means geometrically that, with a displacement of Pstat 
by u, the point at x - u comes to lie on the position x, 
i.e. Pstat is only translated and not rotated. This 
situation is also assumed in the standard lattice- 
dynamical derivations of the temperature factor. The 
thermal average is formed over the displacement 

vectors of the scattering units. The Fourier transforms 
of the scattering units (i.e. normally the scattering 
factors of the atoms) are not contained in the thermal 
average; this means that their orientation is considered 
to be the same for all thermal configurations. Thus, it is 
obvious that (I) is not suitable for treating the case of 
large librations, since the inherent assumption that Pstat 
is not rotated will no longer be valid.* 

For the case of large librations, the formation of the 
thermal average has to be rethought. Firstly, we choose 
a fixed origin in the molecule and consider the displace- 
ment vector UHb at the position x (see Fig. 1). Then we 
have, as usual (Schomaker & Trueblood, 1968; SRC; 
Scheringer, 1978), 

uli b = D x  (2) 

and further, with SRC 

R-l R = E + D,  Rx  ~ - - -  X + nllb, = R r, (3) 

where E is the unit matrix and D and R are functions of 
the librations to. We must now establish which point of 
the molecule coincides with point x for a rotation to and 
a translation t of the molecule. This point then contri- 
butes P(t, to) dt dto to the thermal average. As can be 
seen from Fig. 1, this point is located at position Q -- 
R - ~ ( x -  t), and the original point x is transferred to 
position P = Rx + t. Thus we obtain for the average 
density, i.e. for the dynamic density with rigid-body 
motions, 

GO 

p(x)dy n : f f  p[R-~(x -- t)]statP(t, to) dt dto. (4) 
--OO 

Note that the real integration limits for to are -zt  and ~t; 
but this does not matter in practice. In a general crystal 
metric, R is not orthogonal and the formulation with 
R -l in (4) (instead of R r) is then relevant. 

The errors which were made in the quoted papers 
can easily be detected by means of Fig. 1. Ruysink & 
Vos [1974, equation (18)11" and Bats & Feil [1977, 
equation (3)1 used (1) with u = t + uli b = t + Dx. This 
would mean that, with a rotation to, the point Q" = 
- D x  in Fig. 1 would coincide with position x. This is 
obviously impossible. It is rather the point Q' = R-~x 
in Fig. 1, which is rotated into the position x. SRC 
assume the point P '  = Rx in Fig. 1 instead of Q'; this 
would mean that, with the rotation to, the points x and 

* The treatment of librations in the harmonic approximation of 
the nuclear motions can still be performed by applying (1): With a 
rotation ta, a nucleus is now assumed to move along the tangent of  
a circle (and not along the circle itself). Thus the nuclei perform 
translations (and not the intended librations), and then P(u) is a 
Gaussian distribution whose covariance matrix is formed from the 
rigid-body vibrations tensors TLS (Schomaker & Trueblood, 1968; 
Scheringer, 1977). 

~f A referee has pointed out that a positive sign of Lr (in this 
paper Dx) was used in the calculation of their examples by Ruysink 
& Vos (1974). With +Lr, instead of --Lr which was printed, 
Ruysink & Vos's equation (18) corresponds to SRC (4), and gives a 
correct result with a symmetric p.d.f, which is given by a Gaussian 
distribution of the librations. 
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P' = Rx in Fig. 1 would be interchanged. However,  
with SRC (5) which implies the symmetry  of  the p.d.f., 
SRC (4) and (9) can still be considered as correct in a 
Cartesian coordinate  system. With P ( - t o )  = P(to) 
inserted in SRC (4), and the substitution to' = - to ,  
SRC (4) can be converted to a form that  corresponds 
to (4) without translat ions.  But the error which is 
inherent in SRC (4) and (9) becomes evident in SRC 
(14) and (20) and, now, cannot  be corrected by 
application of  the symmetry  P ( - t o )  = P(to). SRC (14) 
contains - R h  instead of  h. The first term of  SRC (20) 
is stated to be the same as SRC (14), but  it does not 
contain - R h ,  as it should in the line of SRC' s  
derivation. The other two terms in SRC (20) have 
incorrect  signs because Rh was used in SRC (18) 
instead of  Rrh .  Obviously,  neither can the signs be 
reversed nor - R h  be removed by application of  P ( - t o )  
= P(to). 

To derive the scattering factor of  the dynamic  
density (4), we first make  the substitution x - t = y, dx 
= dy, then perform a calculat ion similar to SRC (4-9) ,  
but with the substi tution R-~y  = y' ,  dy = dy ' ,  and 
obtain 

+GO 

f(h) , jy .  = ff f (Rrh)~tat  exp (2zdh r t) P(t, to) dt  dto. (5) 
--OO 

(5) holds in a general crystal metric, but then note R r 
R -~. Since in (5) R r arises, and not R -1 as in (4), we do 

P ' -  Rx t P -  Rx ~ t 
• Z - x  

0 J 

O' R 'x Q"= Dx 

Fig. 1. Convolution for rigid-body motion. After a rotation to about 
the origin O and a translation t, the end-point of the vector x is 
shifted into the position P = Rx + t. At the same time, the point 
Q, initially located at R-~(x -- t), is shifted into the position x. 
The same points P and Q are arrived at if the translation t is 
performed first and then the rotation to about the shifted 
molecular origin at O'. For a pure rotation to about O neither the 
point Q" = -Dx nor the point P' = Rx is shifted into the position 
x but the point Q' = R-~x. Solid arcs refer to the origin O, 
dashed arcs to the origin O' which is obtained after the trans- 
lation t. 

not consider (5) to be a ' convolut ion integral '  with 
respect to the librations. I From their calculat ion SRC 
(4-9) ,  SRC were led to believe that  the operat ions  in 
direct and reciprocal space were fully identical, and 
hence, they denoted the operat ion in reciprocal space 
also by 'convolut ion ' . ]  The dynamic  density (4) and the 
dynamic  molecular  scattering factor  (5) cannot  
generally be split up into t ranslat ions and librations 
because the p.d.f. P(t ,  to) cannot  generally be factored 
into pure t ranslat ion and rota t ion parts. Fur thermore ,  
(5) contains the remarkable  result that  temperature  
factors do not  appear.  

Temperature factors 

There are, however,  two cases where temperature  
factors arise in (5). One of  these is the case of  statistical 
independence of  t and to, the other  is the case of  density 
units with spherical symmetry.  If  the t ranslat ions t and 
the librations to are statistically independent  (for 
example, if t and to are Gaussian distributed and the 
correlat ion tensor S is zero), we have P(t,to) = 
Ptr(t) Plib(to) and can now integrate over t, and obtain 
from (5) 

oO 

f (h)dy ,  = Ttr(h) f f (  Rr h)stat Plib(to) dto. (6) 
--OO 

Ttr(h ) is the temperature  factor for the translat ions of  
the molecule. The remaining integral in (6) canno t  
generally be expressed by temperature  factors, except 
for the case which we shall now consider.  

For  charge distributions of  spherical symmetry ,  (5) 
and (6) can be simplified: f (h)dy . can be expressed by 
f (h)s ta t  and temperature  factors which have to be 
calculated for the centres of  the charge distributions.* 
We show this for the general case of  coupled trans- 
lations and librations. The basic idea of our  p roof  is to 
show that,  after an appropr ia te  shift of  the origin, a 
density unit of  spherical symmetry  is rotated into itself, 
and thus the thermal  average for this density unit can 
be fully described by considering translat ions only. Let 
the density unit be centered at x 0 with respect to an 
arbi t rary origin, and let the t ranslat ions of  the molecule 
be t with respect to this origin. Then the translat ions t o 
with respect to the origin x o are t o = t + Dx 0, whereas 
the librations remain unaltered, i.e. to o = to [Scheringer, 
1978, equations (6.1)-(6.3)1. This situation was 
described geometrical ly by Johnson  (1970). We now 
denote the spherically symmetr ic  density unit by 
p(X)stat , and, in a Cartesian coordinate  system with 
origin x0, we have IR-~xl = Ixl. Hence, p l R - ~ ( x -  t0)] 

* SRC have shown this for the case of statistically independent 
translations and librations; but their proof is only correct with Rrh 
instead of Rh in SRC (9), which then leads to the identity of SRC 
(14) and (15) which is asserted but not present. 
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is independent of ta, and (4) can now be integrated over 

oo 

p(X)dyn = f p(X-- t0)statq(to)dt 0. (7) 
--OO 

By definition, q(to) is the marginal p.d.f, of P(to, to). The 
appearance of q(t o) in (7) means that a given rotational 
state of Pstat does not matter in the description of the 
translations. Obviously this is because the rotations 
around x o transform the density unit into itself. (7) is a 
convolution integral of the standard form (1) and, 
hence, the Fourier transform of q(t 0 is the temperature 
factor T(h) for the density unit Pstat and has to be 
calculated for the present origin, x o. Finally, we have to 
remove the restriction of having the origin at the centre 
of the density unit. Transformation to the initial 
arbitrary origin introduces a phase factor in the 
structure factor but leaves the temperature factor 
unaltered. Hence, the Fourier transform of the dynamic 
density of a spherically symmetric density unit located 
at x o is given by 

f(h)dyn = f(h)stat T(h) exp (2n:/hrxo), (8) 

where the temperature factor T(h) has to be evaluated 
for the point x0. (8) can also be derived if one starts 
from (5). Then one also obtains the temperature factor 
as the Fourier transform of the marginal p.d.f, q(t0). 

Temperature factors for the centres of spherically 
symmetric density units can be calculated from the 
TLS p model (Scheringer, 1978). We had assumed that 
the librations were Gaussian distributed, and had 
calculated the cumulants which describe the tem- 
perature factor up to and including the fourth moments 
of t and co. These temperature factors are independent 
of choice of origin; they depend on the coordinates 
x, on the vibration tensors TLS, and on the coordinates 
of a special point -p in the molecule for which, when 
chosen as origin, the translations of the molecule are 
assumed to be harmonic (Gaussian distributed). Inter- 
nal motions are neglected. 

For calculating temperature factors in practice, the 
TLS p model for large librations can be applied in the 
following cases: 

(1) to the spherical atoms in a refinement with X-ray 
data, 

(2) to the nuclei of the atoms in a refinement with 
neutron data, 

(3) to the spherical atoms in X - N  and related maps, 
(4) to the spherically symmetric atomic cores in the 

refinement of empirical density models, such as were 
described by Hellner (1977) and Dietrich & Scheringer 
(1978), 

(5) to the one-centre ns 2 orbital products (n = 1, 
2 . . . )  and other spherically symmetric atomic cores in 
the calculation of dynamic difference densities from 
theoretical static difference densities, cf. SRC. 

Unfortunately, the programming of the TLS p model 
requires some effort. But in case (3) the large librations 
of molecules should be treated correctly, since small 
errors in the temperature factors give rise to large 
errors in X - N  maps (Scheringer, Kutoglu & Mullen, 
1978). In the refinement of empirical density models 
[case (4)] an improvement is to be expected, since the 
components of TLS p will be less correlated than the 
temperature factors of the individual atomic cores to 
the density parameters of the model. The least 
important application appears to be case (5), since the 
same temperature factors are used for both contri- 
butors to the difference density, and, thus, the errors in 
the temperature factors cancel each other out to some 
extent. This is confirmed by actual calculations of 
dynamic difference densities, of. Hase, Reitz & Schweig 
(1976), SRC, and Hase, Schulte & Schweig (1978). 

If the librations are statistically independent and the 
density units in a molecule are not spherically sym- 
metric, then the calculation of the dynamic scattering 
factors is cumbersome and can only be approximated 
(see SRC for orbital products). If translations and 
librations are coupled, then the evaluation of (4) and (5) 
appears to be insoluble. A first approximation in this 
case is to calculate the temperature factor for the 
centroid of the density unit and to use it for the whole 
unit, unless in special cases a better solution is found. 
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